

www.TST-CO.com

Specification sheet

KTA50-G8

Description

The KTA50-Series benefits from years of technical development and improvement to bring customers an innovative and future proof diesel engine that keeps pace with ever changing generator set requirements.

Recognised globally for its performance under even the most severe climatic conditions, the KTA50-Series is widely acknowledged as the most robust and cost-effective diesel engine in its power range for the generator set market.

Features

Coolpac Integrated Design - Products are supplied complete with cooling package and air cleaner kit for a complete power package. Each component has been specifically developed and rigorously tested for G-Drive products, ensuring high performance, durability and reliability.

Aftercooler – Large capacity integral aftercoolers are supplied with cooling water separate from the engine jacket. This provides cooler, denser intake air for more complete combustion and reduced engine stresses for longer life and low exhaust emissions.

Cooling System – A two pump, two loop system must be employed; i.e. the engine jacket is cooled by one radiator or heat exchanger and the aftercoolers are cooled by a separate radiator or heat exchanger.

Pistons – Pistons are dual Ni-resist, aluminium alloy, ground and shaped to compensate for thermal expansion, which assures a precise fit at all normal operating temperatures.

Service and Support - G-Drive products are backed by an uncompromising level of technical support and after sales service, delivered through a world class service network.

Codes and standards

This engine has been built to comply with CE certification.

This engine has been designed in facilities certified to ISO9001 and manufactured in facilities certified to ISO9001 or ISO9002.

1500 rpm (50 Hz Ratings)

Gros	s Engine Oເ	ıtput	Net	Engine Out	Typical Generator Set Output						
Standby	Prime	Base	Standby	Prime	Base	Standby	(ESP)	Prime	(PRP)	Base (COP)	
kWm/BHP				kWm/BHP	kWe	kVA	kWe	kVA	kWe	kVA	
1429/1915	1200/1608	1100/1475	1397/1872	397/1872 1168/1566 1		1340 1675		1120	1400	1025	1282

General Engine Data

Туре	4 cycle, 60° Vee, Turbocharged and Aftercooled
Bore, mm	159
Stroke, mm	159
Displacement, Litre	50.3
Cylinder Block	16-cylinder,direct injection, 4-cycle diesel engine
Battery Charging Alternator	35A
Starting Voltage	24V
Fuel System	Direct injection Cummins PT
Fuel Filter	Dual spin on paper element fuel filters with standard water separator
Lube Oil Filter Type(s)	Spin on full flow filter
Lube Oil Capacity (I)	178
Flywheel Dimensions	SAE #0

Coolpac Performance Data

Cooling System Design	2 pump - 2 loop
Coolant Ratio	50% ethylene glycol; 50% water
Coolant Capacity (I)	496
Limiting Ambient Temp.(°C)**	48
Fan Power (kWm)	32
Cooling system air flow (m ³ /s)**	28.8
Air Cleaner Type	Dry replaceable element with restriction indicator

^{** @13} m m H₂O

Weight and Dimensions

Length	Width	Height	Weight (dry)
mm	mm	mm	kg
3720	2000	2516	6580

Fuel Consumption 1500 (50 Hz)

%	kWm										
/•	KVVIII	BHP	L/hr	US gal/hr							
Standby Pow	er										
100	1429	1915	345	91.2							
Prime Power											
100	1200	1608	289	76.3							
75	900	1206	222	58.7							
50	600	804	155	40.9							
25	300	402	82	21.7							
Continuous P	Power										
100	1100	1475	266	70.4							

Cummins G-Drive Engines

Asia Pacific 10 Toh Guan Road #07-01 TT International Tradepark Singapore 608838 Phone 65 6417 2388 Fax 65 6417 2399

Europe, CIS, Middle East and Africa Manston Park Columbus Ave Manston Ramsgate Kent CT12 5BF. UK Phone 44 1843 255000 Fax 44 1843 255902 Latin America Rua Jati, 310, Cumbica Guarulhos, SP 07180-900 Brazil Phone 55 11 2186 4552 Fax 55 11 2186 4729 Mexico Cummins S. de R.L. de C.V. Eje 122 No. 200 Zona Industrial San Luis Potosí, S.L.P. 78090 Mexico Phone 52 444 870 6700 Fax 52 444 870 6811 North America 1400 73rd Avenue N.E. Minneapolis, MN 55432 USA Phone 1 763 574 5000 Toll-free 1 877 769 7669 Fax 1 763 574 5298

Ratings Definitions

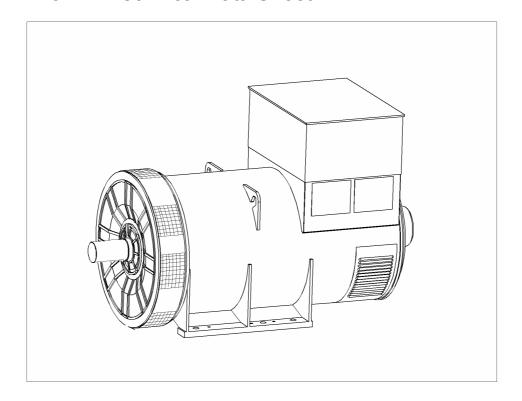
Emergency Standby Power (ESP):

Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Limited-Time Running Power (LTP):

Applicable for supplying power to a constant electrical load for limited hours. Limited-Time Running Power (LTP) is in accordance with ISO 8528.

Prime Power (PRP):


Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Base Load (Continuous) Power (COP):

Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) in accordance with ISO 8528, ISO 3046, AS 2789, DIN6271 and BS 5514.

PI734B - Technical Data Sheet

SPECIFICATIONS & OPTIONS

STANDARDS

Newage Stamford industrial generators meet the requirements of BS EN 60034 and the relevant sections of other national and international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC60034, CSA C22.2-100. AS1359.

Other standards and certifications can be considered on request.

DESCRIPTION

The STAMFORD PI range of synchronous ac generators are brushless with a rotating field. They are separately excited by the STAMFORD Permanent Magnet Generator (PMG). This is a shaft mounted, high frequency, pilot exciter which provides a constant supply of clean power via the Automatic Voltage Regulator (AVR) to the main exciter. The main exciter output is fed to the main rotor, through a full wave bridge rectifier, protected by surge suppression.

VOLTAGE REGULATORS

The PI range generators, complete with a PMG, are available with one of two AVRs. Each AVR has soft start voltage build up and built in protection against sustained over-excitation, which will de-excite the generator after a minimum of 8 seconds.

Underspeed protection (UFRO) is also provided on both AVRs. The UFRO will reduce the generator output voltage proportional to the speed of the generator below a presettable level.

The MX341 AVR is two phase sensed with a voltage regulation of \pm 1 %. (see the note on regulation).

The MX321 AVR is 3 phase rms sensed with a voltage regulation of 0.5% rms (see the note on regulation). The UFRO circuit has adjustable slope and dwell for controlled recovery from step loads. An over voltage protection circuit will shutdown the output device of the AVR, it can also trip an optional excitation circuit breaker if required. As an option, short circuit current limiting is available with the addition of current transformers.

Both the MX341 and the MX321 need a generator mounted current transformer to provide quadrature droop characteristics for load sharing during parallel operation. Provision is also made for the connection of the STAMFORD power factor controller, for embedded applications, and a remote voltage trimmer.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low levels of voltage waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators feature a main stator with 6 ends brought out to the terminals, which are mounted on the frame at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H', and meets the requirements of UL1446.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

NOTE ON REGULATION

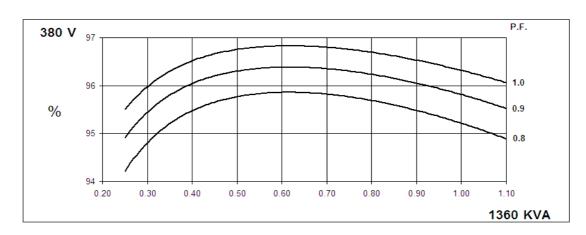
The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

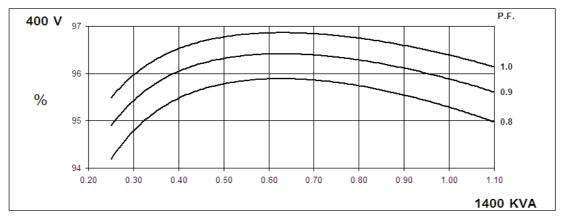
Note: Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

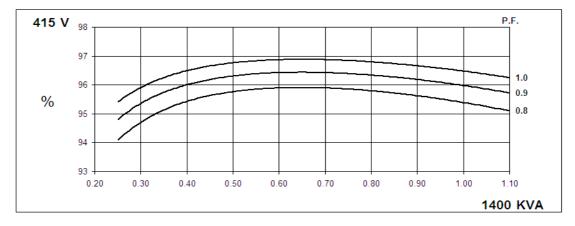
Front cover drawing is typical of the product range.

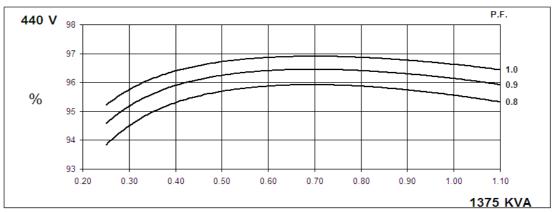
WINDING 312

CONTROL SYSTEM	SEPARATEL	PARATELY EXCITED BY P.M.G.								
A.V.R.	MX341	MX321								
VOLTAGE REGULATION	± 1%	± 0.5 %	With 4% ENGINE GOVERNING							
SUSTAINED SHORT CIRCUIT	REFER TO S	FER TO SHORT CIRCUIT DECREMENT CURVES (page 7)								

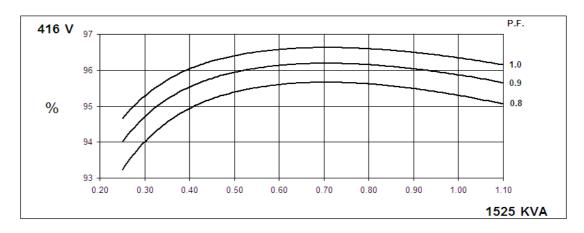

					- (13- /								
INSULATION SYSTEM				CLAS	SS H								
PROTECTION				IP2	23								
RATED POWER FACTOR				0.	8								
STATOR WINDING				DOUBLE L	AYER LAP								
WINDING PITCH				TWO T	HIRDS								
WINDING LEADS	6												
MAIN STATOR RESISTANCE	0.0016 Ohms PER PHASE AT 22°C STAR CONNECTED												
MAIN ROTOR RESISTANCE	1.67 Ohms at 22°C												
EXCITER STATOR RESISTANCE				17.5 Ohms	s at 22°C								
EXCITER ROTOR RESISTANCE			0.04	3 Ohms PER	PHASE AT 2	2°C							
R.F.I. SUPPRESSION	BS EN 61000-6-2 & BS EN 61000-6-4, VDE 0875G, VDE 0875N. refer to factory for o												
WAVEFORM DISTORTION		NO LOAD <	< 1.5% NON-	DISTORTING	BALANCE	D LINEAR LO	AD < 5.0%						
MAXIMUM OVERSPEED				2250 R	ev/Min								
BEARING DRIVE END				BALL. 6	228 C3								
BEARING NON-DRIVE END	BALL. 6226 C3 BALL. 6319 C3												
		1 BEARING 2 BEARIN											
WEIGHT COMP. GENERATOR		276	0 kg			2710	 O kg						
WEIGHT WOUND STATOR		130	6 kg		1306 kg								
WEIGHT WOUND ROTOR		113	9 kg			107	7 kg						
WR ² INERTIA			8 kgm²			31.748							
SHIPPING WEIGHTS in a crate	2833kg 2779kg												
PACKING CRATE SIZE		194 x 105	x 154(cm)			194 x 105	x 154(cm)						
		50	Hz			60	Hz						
TELEPHONE INTERFERENCE	THF<2% TIF<50												
COOLING AIR		2.69 m³/se	c 5700 cfm			3.45 m³/sec	7300 cfm						
VOLTAGE STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277					
kVA BASE RATING FOR REACTANCE VALUES	1360	1400	1400	1375	1525	1625	1655	1690					
Xd DIR. AXIS SYNCHRONOUS	3.50	3.26	3.02	2.64	4.25	4.04	3.77	3.53					
X'd DIR. AXIS TRANSIENT	0.21	0.20	0.18	0.16	0.26	0.25	0.23	0.22					
X"d DIR. AXIS SUBTRANSIENT	0.16	0.15	0.14	0.12	0.19	0.18	0.17	0.16					
Xq QUAD. AXIS REACTANCE	2.26	2.10	1.95	1.70	2.74	2.61	2.43	2.28					
X"q QUAD. AXIS SUBTRANSIENT	0.32	0.29	0.27	0.24	0.38	0.37	0.34	0.32					
XLLEAKAGE REACTANCE	0.04	0.04	0.03	0.03	0.05	0.05	0.04	0.04					
X2 NEGATIVE SEQUENCE	0.22	0.21	0.19	0.17	0.27	0.26	0.24	0.23					
X ₀ ZERO SEQUENCE	0.03	0.03	0.02	0.02	0.03	0.03	0.03	0.03					
REACTANCES ARE SATURA	ΓED	V	ALUES ARE	PER UNIT A	T RATING AI	ND VOLTAGE	E INDICATED)					
T'd TRANSIENT TIME CONST.	<u> </u>			0.1									
T'd SUB-TRANSTIME CONST. T'do O.C. FIELD TIME CONST.	<u> </u>			0.0 2.1									
Ta ARMATURE TIME CONST.													
· · · · · · · · · · · · · · · · · · ·	0.02s 1/Xd												

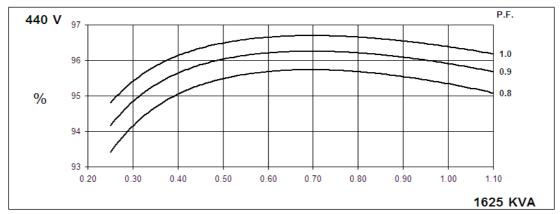

50 Hz

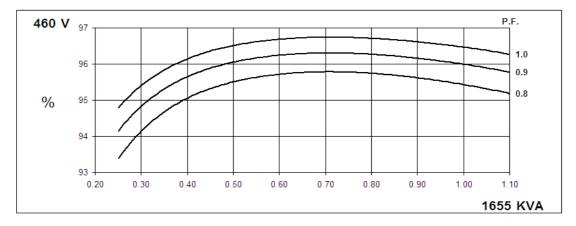

PI734B Winding 312

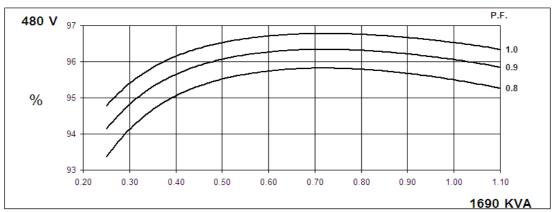


THREE PHASE EFFICIENCY CURVES

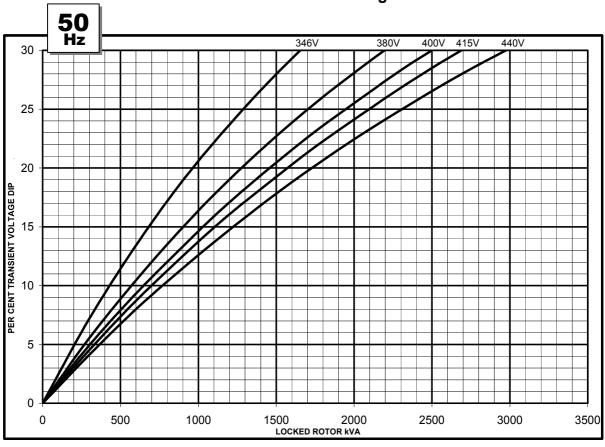


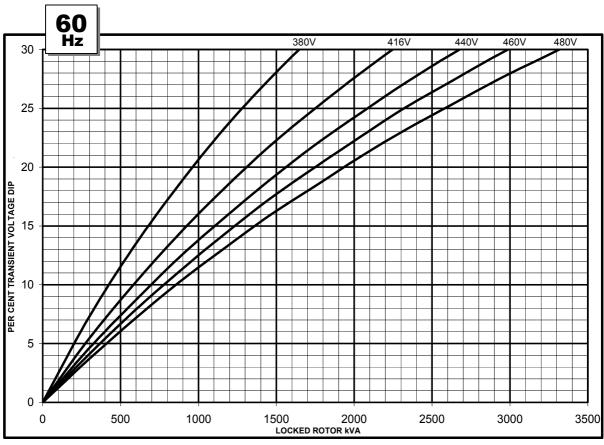



PI734B Winding 312


60 Hz

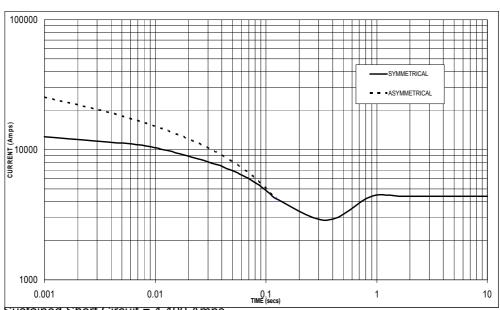
THREE PHASE EFFICIENCY CURVES

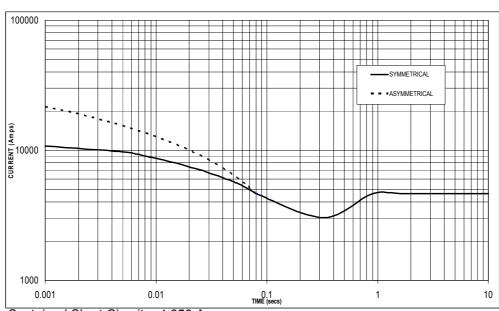




PI734BWinding 312

Locked Rotor Motor Starting Curve




Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

50 Hz

Sustained Short Circuit = 4,400 Amps

60 Hz

Sustained Short Circuit = 4,650 Amps

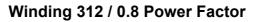
Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage:

50	Hz	60Hz						
Voltage	Factor	Voltage	Factor					
380v	x 1.00	416v	x 1.00					
400v	x 1.05	440v	x 1.06					
415v	x 1.09	460v	x 1.10					
440v	x 1.16	480v	x 1.15					
The second size of	al accompany to confi	!	4 (

The sustained current value is constant irrespective of voltage level

Note 2

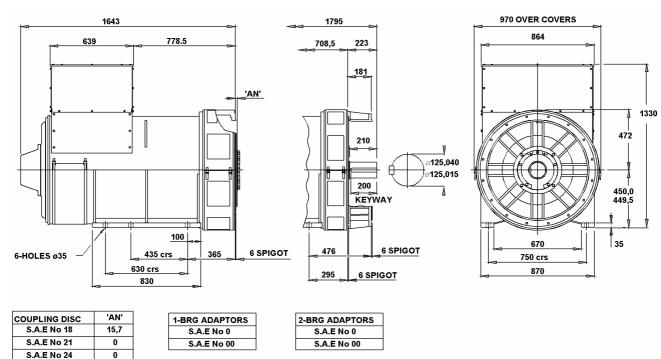

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit:

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

Note 3

Curves are drawn for Star (Wye) connected machines.



RATINGS

Clas	C	Cont. F - 105/40°C			Cont. H - 125/40°C			Standby - 150/40°C				Standby - 163/27°C					
50Hz Star (V)		380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
	kVA	1265	1305	1305	1280	1360	1400	1400	1375	1415	1460	1460	1430	1455	1500	1500	1470
kW		1012	1044	1044	1024	1088	1120	1120	1100	1132	1168	1168	1144	1164	1200	1200	1176
Efficiency (%)		95.4	95.5	95.6	95.7	95.2	95.3	95.4	95.6	95.1	95.2	95.3	95.5	95.0	95.1	95.2	95.4
kW Input		1061	1093	1092	1070	1143	1175	1174	1151	1190	1227	1226	1198	1225	1262	1261	1233

6	60 Hz	Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
kVA		kVA	1415	1510	1540	1575	1525	1625	1655	1690	1590	1690	1725	1760	1630	1740	1775	1810
	kW		1132	1208	1232	1260	1220	1300	1324	1352	1272	1352	1380	1408	1304	1392	1420	1448
	Efficiency (%)		95.4	95.5	95.6	95.6	95.3	95.3	95.4	95.5	95.2	95.2	95.3	95.4	95.1	95.2	95.3	95.3
	kW Input		1187	1265	1289	1318	1280	1364	1388	1416	1336	1420	1448	1476	1371	1462	1490	1519

DIMENSIONS

Barnack Road • Stamford • Lincolnshire • PE9 2NB

© 2004 Newage International Limited. Reprinted with permission of N.I. only. Printed in England.

Tel: 00 44 (0)1780 484000 • Fax: 00 44 (0)1780 484100 Website: www.newage-avkseg.com