X1.3-G2

> Specification sheet

Our energy working for you.™

Description

The X1.3 has all the strength and reliability the industry has come to expect from Cummins Inc., but in a smaller, lighter and more economical package. The X1.3 features direct fuel injection, resulting in cleaner quieter and more fuel efficient performance. The CoolPac system offers a cost effective, fully warranted, high ambient, integrated system solution capable of meeting our customers application requirements.

This engine has been built to comply with CE certification.

This engine has been designed in facilities certified to ISO9001 and manufactured in facilities certified to ISO9001 or ISO9002.

Features

The X1.3 engine is built to last, with a cast-iron block designed for durability and reliability. Design elements include:

- Bosch direct injection in-line pump for cleaner, more efficient fuel consumption.
- Heavy Duty Air Cleaner, fitted as standard.
- Parent bore block with deep, stiff crankcase and optimised rib arrangement to enhance strength and reduce noise.
- 12 volt electrics package as standard, with starter, fuel solenoid and electronic governor fitted as standard.
- · Single spin-on Oil Filter and Fuel Filter
- 500 hour Service Intervals
- SAE 4/6.5 flywheel housing

Integrated Design – The X1.3 Coolpac is supplied with cooling package in kit form for OEM mounting. A heavy duty air cleaner is supplied fitted to engine to provide a complete power package. Each component has been has been specifically developed and rigorously tested for G-Drive products, ensuring high performance, durability and reliability.

Service and Support - G-Drive products are backed by an uncompromising level of technical support and after sales service, delivered through a world class service network.

1500 rpm (50 Hz Ratings)

Gros	ss Engine O	utput		Тур	ical Genera				
Standby	Prime	Base	Standb	y (ESP)	Prime	(PRP)	Base (COP)		
	kWm (BHP)	1	kWe	kVA	kWe	kVA	kWe	kVA	
11.8 (15.8)	10.6 (14.2)	8.3 (11.1)	8.8	11	8	10	5.6	7	

General Engine Data

Туре	Inline, 4 cylinder, Diesel
Bore	95mm
Stroke	91mm
Displacement	1.29litre
Cylinder Block	Alloy cast iron, in-line, 2 cylinder
Battery Charging Alternator	Not supplied.
Starting Voltage	12 Volts
Fuel System	Direct Injection
Fuel Filter	Spin-on fuels filter with water separator
Lube Oil Filter Type	Spin on full flow filter
Lube Oil Capacity	4.5 Litre
Flywheel Dimensions	SAE 4/6.5"

Coolpac Performance Data

Cooling System Design	Jacket Water Cooled
Coolant Ratio	
Coolant Capacity (I)	3
Limiting Ambient Temp.**	50degC
Fan Power (Kwm)	0.4
Cooling System Air Flow (m³/s)**	12.45
Air Cleaner Type	Heavy Duty (25g/CFM)
** @ 12 mm H ² 0	

Ratings Definitions

Emergency Standby Power (ESP):

Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

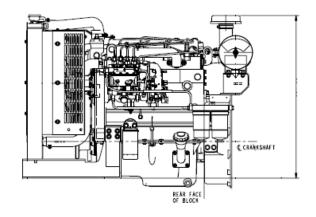
Limited-Time Running Power (LTP):

Applicable for supplying power to a constant electrical load for limited hours. Limited-Time Running Power (LTP) is in accordance with ISO 8528.

Prime Power (PRP):

Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Base Load (Continuous) Power (COP):

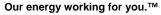

Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) in accordance with ISO 8528, ISO 3046, AS 2789, DIN6271 and BS 5514.

Shipping Weight & Dimensions

Length	Width	Height	Weight (dry)
mm	mm	mm	kg
950	750	965	265

Fuel Consumption 1500 (50 Hz)

%	kWm	ВНР	L/ph	US gal/ph					
Standby Po	Standby Power								
100	11.8	15.8	3.4	0.9					
Prime Power									
100	10.6	14.2	3	0.8					
75	7.94	10.65	2.4	0.6					
50	5.3	7.1	1.8	0.5					
25	2.65	3.55	1.2	0.3					
Continuous	Continuous Power								
100	8.3	11.1	2.5	0.7					

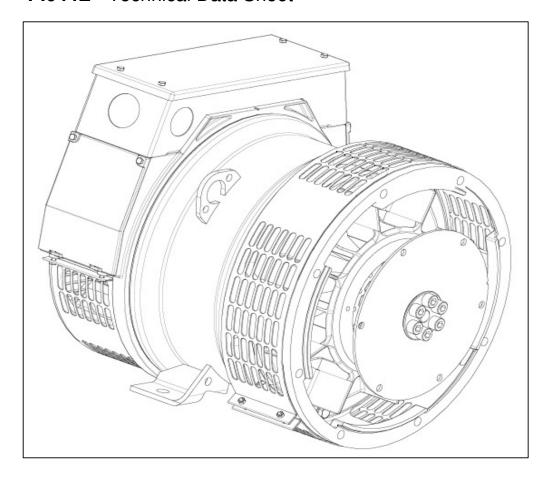

Cummins G-Drive Engines

Asia Pacific 10 Toh Guan Road #07-01 TT International Tradepark Singapore 608838 Phone 65 6417 2388 Fax 65 6417 2399 Europe, CIS, Middle East and Africa Manston Park Columbus Ave Manston Ramsgate Kent CT12 5BF. UK Phone 44 1843 255000 Fax 44 1843 255902

Latin America Rua Jati, 310, Cumbica Guarulhos, SP 07180-900 Brazil Phone 55 11 2186 4552 Fax 55 11 2186 4729 Mexico Cummins S. de R.L. de C.V. Eje 122 No. 200 Zona Industrial San Luis Potosí, S.L.P. 78090 Mexico Phone 52 444 870 6700

Fax 52 444 870 6811

North America 1400 73rd Avenue N.E. Minneapolis, MN 55432 USA Phone 1 763 574 5000 USA Toll-free 1 877 769 7669 Fax 1 763 574 5298



PI044E - Technical Data Sheet

PI044E

STAMFORD

SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359.

Other standards and certifications can be considered on request.

VOLTAGE REGULATOR

AS480 AVR fitted as STANDARD

With this self-excited system the main stator provides power via the AVR to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three-phase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling. The AS480 will support limited accessories, RFI suppession remote voltage trimmer and for the P1 range only a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

The AVR is can be fitted to either side of the generator in its own housing in the non-drive end bracket.

Excitation Boost System (EBS) (OPTIONAL)

The EBS is a single, self-contained unit, attached to the non-drive end of the generator.

The EBS unit consists of the Excitation Boost Controller (EBC) and an Excitation Boost Generator (EBG). Under fault conditions, or when the generator is subjected to a large impact load such as a motor starting, the generator voltage will drop. The EBC senses the drop in voltage and engages the output power of the EBG. This additional power feeds the generator's excitation system, supporting the load until breaker discrimination can remove the fault or enable the generator to pick up a motor and drive the voltage recovery.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted at the non-drive end of the generator. Dedicated single phase generators are also available. A sheet steel terminal box contains provides ample space for the customers' wiring and gland arrangements. Alternative terminal boxes are available for customers who want to fit additional components in the terminal box.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION / IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 9 are subject to the following reductions

5% when air inlet filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

3% for every 5% by which the operational ambient temperature exceeds 40%.

Note: Requirement for operating in an ambient exceeding 60 °C must be referred to the factory.

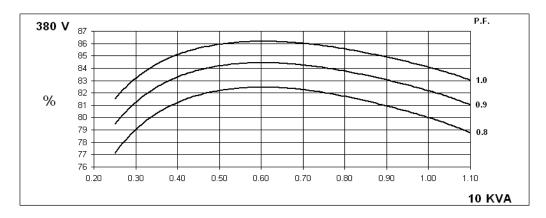
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

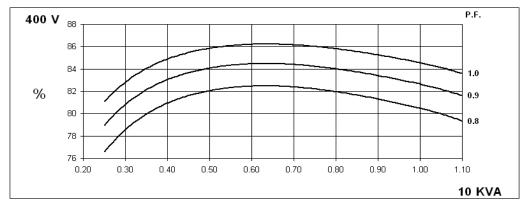
Front cover drawing typical of product range.

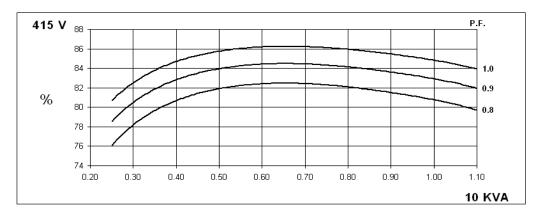
PI044E

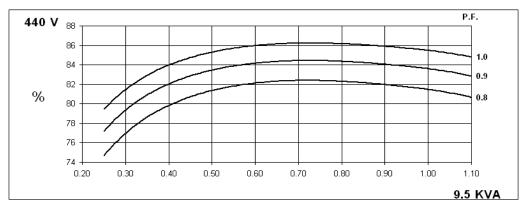
WINDING 311

[T										
CONTROL SYSTEM		STANDARD AS480 AVR (SELF EXCITED)									
VOLTAGE REGULATION	± 1.0 %										
SUSTAINED SHORT CIRCUIT	SELF EXC	ELF EXCITED MACHINES DO NOT SUSTAIN A SHORT CIRCUIT CURRENT									
CONTROL SYSTEM	AS480 AVF	WITH OPT	IONAL EXC	ITATION BC	OST SYSTI	EM (EBS)					
SUSTAINED SHORT CIRCUIT	REFER TO	SHORT CIF	RCUIT DECF	REMENT CU	IRVE (page	8)					
INSULATION SYSTEM				CLA	SS H						
PROTECTION				IP	23						
RATED POWER FACTOR				0	.8						
STATOR WINDING			DOI	JBLE LAYER	R CONCENT	TRIC					
WINDING PITCH				TWOT	HIRDS						
WINDING LEADS				1	2						
STATOR WDG. RESISTANCE		1 327 OI	nms PFR PH			STAR CON	NECTED				
		1.027 01	IIII3 I EITTI	0.415 Ohn		017111 0011	NEOTED				
ROTOR WDG. RESISTANCE											
EXCITER STATOR RESISTANCE				17.5 Ohm							
EXCITER ROTOR RESISTANCE			0.211		PHASE AT	22°C					
EBS STATOR RESISTANCE				12.9 Ohm	s at 22℃						
R.F.I. SUPPRESSION	BS EN 6	61000-6-2 &	BS EN 6100	0-6-4,VDE 0)875G, VDE	0875N. refe	r to factory fo	or others			
WAVEFORM DISTORTION	١	NO LOAD <	1.5% NON-	DISTORTIN	G BALANCE	ED LINEAR I	_OAD < 5.0%	6			
MAXIMUM OVERSPEED				2250 F	Rev/Min						
BEARING DRIVE END	BALL. 6309 - 2RS. (ISO)										
BEARING NON-DRIVE END		BALL. 6306 - 2RS. (ISO)									
		1 BEARING			2 BEARING						
	WITH	EBS	WITHOUT EBS		WITH	EBS	WITHOU	JT EBS			
WEIGHT COMP. GENERATOR	80	kg	78.3 kg		83	kg	81.3 kg				
WEIGHT WOUND STATOR	27	kg	27 kg		27 kg		27	kg			
WEIGHT WOUND ROTOR	27.87	kg	26.17 kg		28.87 kg		27.17 kg				
WR ² INERTIA	0.0953	kgm ²	0.0952 kgm ²		0.097 kgm ²		0.0953 kgm ²				
SHIPPING WEIGHTS in a crate	100	kg	98.3 kg		109 kg		107.3 kg				
PACKING CRATE SIZE		71 x 51 x	67 (cm)			71 x 51 x 67 (cm)					
		50	Hz			60	Hz				
TELEPHONE INTERFERENCE		THF	<2%		TIF<50						
COOLING AIR		0.110 m ³ /s	ec 233cfm		0.135 m³/sec 286 cfm						
VOLTAGE SERIES STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277			
VOLTAGE PARALLEL STAR	190/110	200/115	208/120	220/127	208/120	220/127	230/133	240/138			
VOLTAGE SERIES DELTA	220/110	230/115	240/120	254/127	240/120	254/127	266/133	277/138			
kVA BASE RATING FOR REACTANCE VALUES	10	10	10	9.5	11	11.8	12.1	12.5			
Xd DIR. AXIS SYNCHRONOUS	1.86	1.68	1.56	1.32	2.20	2.11	1.98	1.88			
X'd DIR. AXIS TRANSIENT	0.19	0.17	0.16	0.13	0.22	0.21	0.20	0.19			
X"d DIR. AXIS SUBTRANSIENT	0.12	0.11	0.10	0.09	0.15	0.14	0.13	0.13			
Xq QUAD. AXIS REACTANCE	0.89	0.80	0.74	0.63	1.06	1.02	0.95	0.90			
X"q QUAD. AXIS SUBTRANSIENT XL LEAKAGE REACTANCE	0.19	0.17	0.16	0.13	0.23	0.22	0.21	0.20			
X2 NEGATIVE SEQUENCE	0.07 0.06 0.16 0.14		0.06 0.13	0.05 0.11	0.08	0.08	0.07 0.17	0.07 0.16			
X ₀ ZERO SEQUENCE	0.08	0.07	0.10	0.05	0.09	0.09	0.08	0.08			
REACTANCES ARE SATURAT							GE INDICAT				
T'd TRANSIENT TIME CONST.				0.00	07 s						
T"d SUB-TRANSTIME CONST.				0.00	02 s						
T'do O.C. FIELD TIME CONST.					7 s						
Ta ARMATURE TIME CONST.					07 s						
SHORT CIRCUIT RATIO		1/Xd									

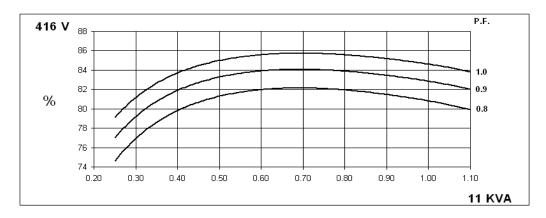

50 Hz

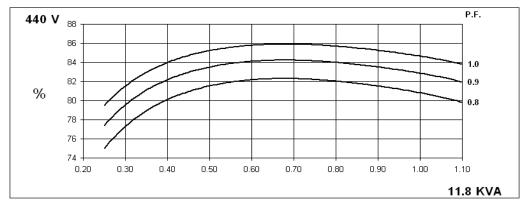

PI044E

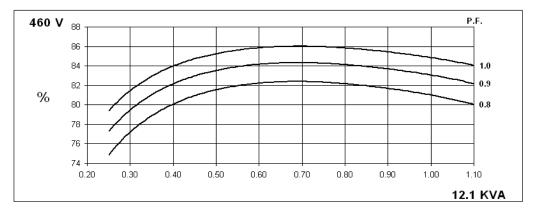

STAMFORD

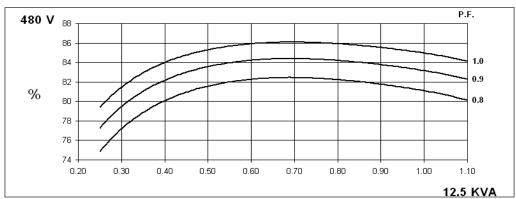

Winding 311

THREE PHASE EFFICIENCY CURVES

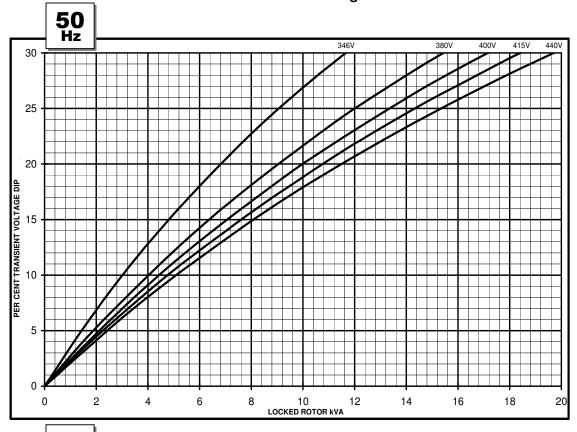

60 Hz

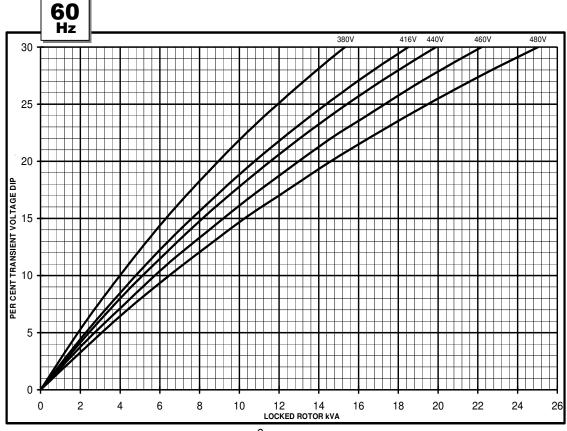

PI044E


STAMFORD

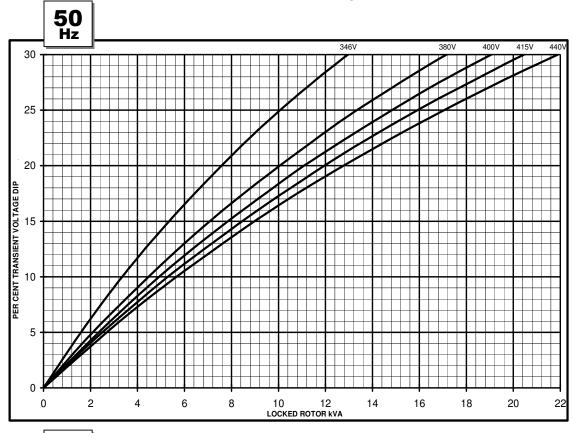

Winding 311

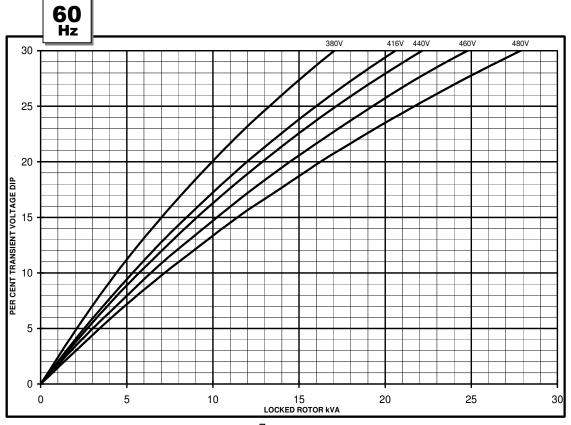
THREE PHASE EFFICIENCY CURVES





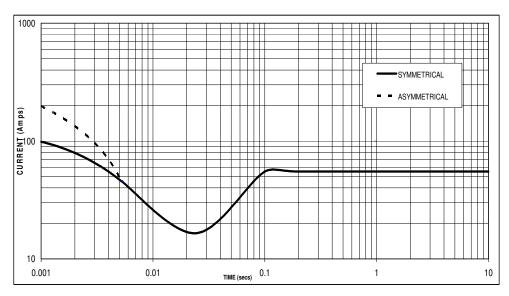
PI044E


Winding 311 AS480 AVR Without EBS Locked Rotor Motor Starting Curves

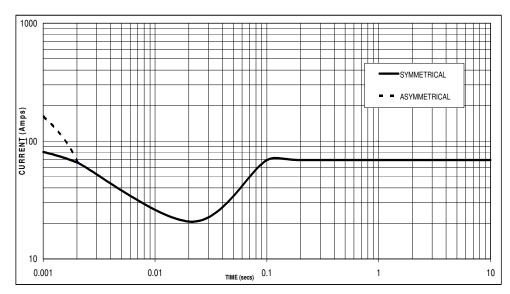


PI044E

Winding 311 AS480 AVR With EBS fitted Locked Rotor Motor Starting Curves



WITH EBS FITTED


Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

50 Hz

Sustained Short Circuit = 55 Amps

60 Hz

Sustained Short Circuit = 69 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage:

50	Hz	60	Hz
Voltage	Factor	Voltage	Factor
380v	X 1.00	416v	X 1.00
400v	X 1.05	440v	X 1.06
415v	X 1.09	460v	X 1.10
440v	X 1.16	480v	X 1.15

The sustained current value is constant irrespective of voltage level

Note 2

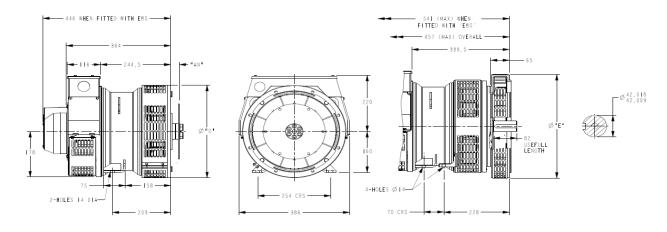
The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit:

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

Note 3

Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown:


Parallel Star = Curve current value X 2 Series Delta = Curve current value X 1.732

Winding 311 / 0.8 Power Factor

RATINGS

	Class - Temp Rise	С	ont. F -	105/40	°C	Co	ont. H -	125/40	℃	St	andby -	150/40	°C	St	andby -	163/27	°C
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
Hz	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
' ' '	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	9.1	9.1	9.1	8.6	10.0	10.0	10.0	9.5	10.8	10.8	10.8	10.3	11.0	11.0	11.0	10.5
	kW	7.3	7.3	7.3	6.9	8.0	8.0	8.0	7.6	8.6	8.6	8.6	8.2	8.8	8.8	8.8	8.4
	Efficiency (%)	80.9	81.3	81.5	82.0	80.0	80.5	80.8	81.5	79.1	79.7	80.0	80.9	78.8	79.4	79.8	80.7
	kW Input	9.0	9.0	8.9	8.4	10.0	9.9	9.9	9.3	10.9	10.8	10.8	10.2	11.2	11.1	11.0	10.4
		1				T				T							1
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	10.0	10.7	11.0	11.4	11.0	11.8	12.1	12.5	11.9	12.7	13.1	13.5	12.1	12.9	13.3	13.8
	kW	8.0	8.6	8.8	9.1	8.8	9.4	9.7	10.0	9.5	10.2	10.5	10.8	9.7	10.3	10.6	11.0
	Efficiency (%)	81.4	81.5	81.7	81.7	80.8	80.8	81.0	81.1	80.1	80.1	80.3	80.4	80.0	80.0	80.1	80.1
	kW Input	9.8	10.5	10.8	11.2	10.9	11.7	11.9	12.3	11.9	12.7	13.1	13.4	12.1	12.9	13.3	13.8

DIMENSIONS

COUPLI	NG DISC
SAE	"AN"
6.5	30.2
7.5	30.2
8	62
10	53.8
11.5	39.6

APAPTOR
Ø"D"
361
405
451
489

8-HOLES SPACED AS 12 8-HOLES SPACED AS 12

2-BRG	APAPTOR
SAE	Ø "E"
5	359
4	406
3	455
2	493

STAMFORD

Barnack Road • Stamford • Lincolnshire • PE9 2NB Tel: 00 44 (0)1780 484000 • Fax: 00 44 (0)1780 484100